Solar water splitting cells.
نویسندگان
چکیده
Energy harvested directly from sunlight offers a desirable approach toward fulfilling, with minimal environmental impact, the need for clean energy. Solar energy is a decentralized and inexhaustible natural resource, with the magnitude of the available solar power striking the earth’s surface at any one instant equal to 130 million 500 MW power plants.1 However, several important goals need to be met to fully utilize solar energy for the global energy demand. First, the means for solar energy conversion, storage, and distribution should be environmentally benign, i.e. protecting ecosystems instead of steadily weakening them. The next important goal is to provide a stable, constant energy flux. Due to the daily and seasonal variability in renewable energy sources such as sunlight, energy harvested from the sun needs to be efficiently converted into chemical fuel that can be stored, transported, and used upon demand. The biggest challenge is whether or not these goals can be met in a costeffective way on the terawatt scale.2
منابع مشابه
Nano-TiO2 for Solar Cells and Photocatalytic Water Splitting: Scientific and Technological Challenges for Commercialization
Nanosized titanium dioxide (nano-TiO2) particles are used in diverse products and devices, including photocatalytic water splitting and solar cells whose successful commercialization is still facing scientific and technologi-
متن کاملHybrid bio-photo-electro-chemical cells for solar water splitting
Photoelectrochemical water splitting uses solar power to decompose water to hydrogen and oxygen. Here we show how the photocatalytic activity of thylakoid membranes leads to overall water splitting in a bio-photo-electro-chemical (BPEC) cell via a simple process. Thylakoids extracted from spinach are introduced into a BPEC cell containing buffer solution with ferricyanide. Upon solar-simulated ...
متن کاملPhoto corrosion of titania nanotubes within water splitting reaction
Titania nanotubes (TNT) prepared by anodization of Ti foils were used for water splitting in a standalone cell. The concentration polarization between the anode side (1M NaOH) and cathode side (0.5 M H2SO4) ensured that the water splitting reaction could take place with no external bias and separate H2 and O2 evolution could be achieved. The destructi...
متن کاملDesign and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells.
Dye sensitized solar cells (DSSCs) use low-cost materials, feature tunable molecular sensitizers, and exhibit quantum efficiencies near unity. These advantageous features can be exploited in the context of solar water splitting by functionalizing DSSCs with catalysts for water oxidation and reduction. This article will cover the development of photoanodes for water splitting DSSCs from the pers...
متن کاملPhoto corrosion of titania nanotubes within water splitting reaction
Titania nanotubes (TNT) prepared by anodization of Ti foils were used for water splitting in a standalone cell. The concentration polarization between the anode side (1M NaOH) and cathode side (0.5 M H2SO4) ensured that the water splitting reaction could take place with no external bias and separate H2 and O2 evolution could be achieved. The destructi...
متن کاملRoles of cocatalysts in photocatalysis and photoelectrocatalysis.
Since the 1970s, splitting water using solar energy has been a focus of great attention as a possible means for converting solar energy to chemical energy in the form of clean and renewable hydrogen fuel. Approaches to solar water splitting include photocatalytic water splitting with homogeneous or heterogeneous photocatalysts, photoelectrochemical or photoelectrocatalytic (PEC) water splitting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical reviews
دوره 110 11 شماره
صفحات -
تاریخ انتشار 2010